
Chapter 15

Maps

Concepts:
. Maps
. Hash tables
. Tables

X is very useful
if your name is

Nixie Knox.
It also

comes in handy
spelling ax

and extra fox.
—Theodor Seuss Geisel

WE HAVE SEEN THAT AN ASSOCIATION ESTABLISHES A LINK between a key and
a value. An associative array or map is a structure that allows a disjoint set of
keys to become associated with an arbitrary set of values. The convenience of
an associative array is that the values used to index the elements need not be
comparable and their range need not be known ahead of time. Furthermore,
there is no upper bound on the size of the structure. It is able to maintain an
arbitrary number of different pieces of information simultaneously. The analogy
with a mathematical map or function stems from the notion that every key has
at most associated value. Maps are sometimes called dictionaries because of the
uniqueness of the association of words and definitions in a household dictionary.
Needless to say, a map structure would nicely support the storage of dictionary
definitions.

15.1 Example Revisited: The Symbol Table

In Chapter 14 we stored the words and their translations (name-alias pairs) in a
structure called a SymTab. This structure forms a good basis for a more general-
purpose approach. Here, we suggest a slightly modified program to accomplish
exactly the same task. The names of the methods, however, have been changed
to suggest slight improvements in the semantics of structure:

SymMap

public static void main(String args[])

{

Map<String,String> table = new MapList<String,String>();

Scanner s = new Scanner(System.in);

String alias, name;

// read in the alias-name database
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do

{

alias = s.next();

if (!alias.equals("END"))

{

name = s.next();

table.put(alias,name); // was called add, but may modify

}

} while (!alias.equals("END"));

// enter the alias translation stage

do

{

name = s.next();

while (table.containsKey(name)) // was contains; more explicit

{

name = table.get(name); // translate alias

}

System.out.println(name);

} while (s.hasNext());

}

The differences between this implementation and that of Section 14.3 involve
improvements in clarity. The method add was changed to put. The difference
is that put suggests that the key-value pair is replaced if it is already in the Map.
We also check for a value in the domain of the Map with containsKey. There
might be a similar need to check the range; that would be accomplished with
containsValue. Finally, we make use of a method, keySet, that returns a Set of
values that are possible keys. This suggests aliases that might be typed in during
the translation phase. Other methods might return a collection of values.

Thus we see that the notion of a Map formalizes a structure we have found
useful in the past. We now consider a more complete description of the inter-
face.

15.2 The Interface

In Java, a Map can be found within the java.util package. Each Map structure
must have the following interface:

Map

public interface Map<K,V>

{

public int size();

// post: returns the number of entries in the map

public boolean isEmpty();

// post: returns true iff this map does not contain any entries

public boolean containsKey(K k);
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// pre: k is non-null

// post: returns true iff k is in the domain of the map

public boolean containsValue(V v);

// pre: v is non-null

// post: returns true iff v is the target of at least one map entry;

// that is, v is in the range of the map

public V get(K k);

// pre: k is a key, possibly in the map

// post: returns the value mapped to from k, or null

public V put(K k, V v);

// pre: k and v are non-null

// post: inserts a mapping from k to v in the map

public V remove(K k);

// pre: k is non-null

// post: removes any mapping from k to a value, from the mapping

public void putAll(Map<K,V> other);

// pre: other is non-null

// post: all the mappings of other are installed in this map,

// overriding any conflicting maps

public void clear();

// post: removes all map entries associated with this map

public Set<K> keySet();

// post: returns a set of all keys associated with this map

public Structure<V> values();

// post: returns a structure that contains the range of the map

public Set<Association<K,V>> entrySet();

// post: returns a set of (key-value) pairs, generated from this map

public boolean equals(Object other);

// pre: other is non-null

// post: returns true iff maps this and other are entry-wise equal

public int hashCode();

// post: returns a hash code associated with this structure

}
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The put method places a new key-value pair within the Map. If the key was
already used to index a value, that association is replaced with a new association
between the key and value. In any case, the put method returns the value

replaced or null. The get method allows the user to retrieve, using a key, the
value from the Map. If the key is not used to index an element of the Map, a
null value is returned. Because this null value is not distinguished from a
stored value that is null, it is common to predicate the call to get with a call
to the containsKey method. This method returns true if a key matching the
parameter can be found within the Map. Sometimes, like human associative
memory, it is useful to check to see if a value is found in the array. This can be
accomplished with the containsValue method.

Aside from the fact that the keys of the values stored within the Map should
be distinct, there are no other constraints on their type. In particular, the keys
of a Map need only be accurately compared using the equals method. For this
reason, it is important that a reasonable key equality test be provided.

There are no iterators provided with maps. Instead, we have a Map return a
Set of keys (a keySet as previously seen), a Set of key-value pairs (entrySet),
or any Structure of values (values). (The latter must not be a Set because
values may be duplicated.) Each of these, in turn, can generate an Iterator

with the iterator method. Because keys might not implement the Comparable

class, there is no obvious ordering of the entries in a Map. This means that the
keys generated from the keySet and the values encountered during an iteration
over the values structure may appear in different orders. To guarantee the
correct association, use the Iterator associated with the entrySet method.

15.3 Simple Implementation: MapList

One approach to this problem, of course, is to store the values in a List. Each
mapping from a key to a value is kept in an Association which, in turn, is
stored in a List. The result is what we call a MapList; we saw this in Sec-
tion 15.2, though we referred to it as a generic Map structure. The approach is
fairly straightforward. Here is the protected data declaration and constructors:

MapList

public MapList()

// post: constructs an empty map, based on a list

{

data = new SinglyLinkedList<Association<K,V>>();

}

public MapList(Map<K,V> source)

// post: constructs a map with values found in source

{

this();

putAll(source);

}
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It is conventional for complex structures to have a copy constructor that gen-
erates a new structure using the entries found in another Map. Notice that we
don’t make any assumptions about the particular implementation of the Map we
copy from; it may be a completely different implementation.

Most of the other methods are fairly straightforward. For example, the put

method is accomplished by finding a (possible) previous Association and re-
placing it with a fresh construction. The previous value (if any) is returned.

public V put(K k, V v)

// pre: k and v are non-null

// post: inserts a mapping from k to v in the map

{

Association<K,V> temp = new Association<K,V>(k,v);

Association<K,V> result = data.remove(temp);

data.add(temp);

if (result == null) return null;

else return result.getValue();

}

The Set constructions make use of the Set implementations we have discussed
in passing in our discussion of Lists:

public Set<K> keySet()

// post: returns a set of all keys associated with this map

{

Set<K> result = new SetList<K>();

Iterator<Association<K,V>> i = data.iterator();

while (i.hasNext())

{

Association<K,V> a = i.next();

result.add(a.getKey());

}

return result;

}

public Set<Association<K,V>> entrySet()

// post: returns a set of (key-value) pairs, generated from this map

{

Set<Association<K,V>> result = new SetList<Association<K,V>>();

Iterator<Association<K,V>> i = data.iterator();

while (i.hasNext())

{

Association<K,V> a = i.next();

result.add(a);

}

return result;

}

(We will discuss the implementation of various Iterators in Section 15.4; they
are filtering iterators that modify Associations returned from subordinate it-
erators.) Notice that the uniqueness of keys in a Map suggests they form a Set,
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yet this is checked by the Set implementation in any case. The values found
in a Map are, of course, not necessarily unique, so they are stored in a general
Structure. Any would do; we make use of a List for its simplicity:

public Structure<V> values()

// post: returns a structure that contains the range of the map

{

Structure<V> result = new SinglyLinkedList<V>();

Iterator<V> i = new ValueIterator<K,V>(data.iterator());

while (i.hasNext())

{

result.add(i.next());

}

return result;

}

Exercise 15.1 What would be the cost of performing a containsKey check on a
MapList? How about a call to containsValue?

Without giving much away, it is fairly clear the answers to the above exercise
are not constant time. It would seem quite difficult to get a O(1) performance
from operators like contains and remove. We discuss the possibilities in the
next section.

15.4 Constant Time Maps: Hash Tables

Clearly a collection of associations is a useful approach to filling the needs of
the map. The costs associated with the various structures vary considerably. For
Vectors, the cost of looking up data has, on average, O(n) time complexity. Be-
cause of limits associated with being linear, all the O(n) structures have similar
performance. When data can be ordered, sorting the elements of the Linear

structure improves the performance in the case of Vectors: this makes sense
because Vectors are random access structures whose intermediate values can
be accessed given an index.

When we considered binary search trees—a structure that also stores Com-

parable values—we determined the values could be found in logarithmic time.
At each stage, the search space can be reduced by a factor of 2. The difference
between logarithmic and linear algorithms is very dramatic. For example, a
balanced BinarySearchTree or an ordered Vector might find one number in a
million in 20 or fewer compares. In an unordered Vector the expected number
of compares increases to 500,000.

Is it possible to improve on this behavior? With hash tables, the answer
is, amazingly, yes. With appropriate care, the hash table can provide access
to an arbitrary element in roughly constant time. By “roughly,” we mean that
as long as sufficient space is provided, each potential key can be reserved an
undisturbed location with probability approaching 1.
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How is this possible? The technique is, actually, rather straightforward. Here I was just going
to say that.is an example of how hashing occurs in real life:

We head to a local appliance store to pick up a new freezer. When we
arrive, the clerk asks us for the last two digits of our home telephone
number! Only then does the clerk ask for our last name. Armed with
that information, the clerk walks directly to a bin in a warehouse of
hundreds of appliances and comes back with the freezer in tow.

The technique used by the appliance store was hashing. The “bin” or bucket that
contains the object is identified by the last two digits of the phone number of
the future owner. If two or more items were located in the bin, the name could
be used to further distinguish the order.

An alternative approach to the “addressing” of the bins might be to identify
each bin with the first letter of the name of the customer. This, however, has a
serious flaw, in that it is likely that there will be far more names that begin with
S than with, say, K. Even when the entire name is used, the names of customers That would be a

large number of
bins!

are unlikely to be evenly distributed. These techniques for addressing bins are
less likely to uniquely identify the desired parcel.

The success of the phone number technique stems from generating an identi-
fier associated with each customer that is both random and evenly distributed.1

15.4.1 Open Addressing

We now implement a hash table, modeled after the Hashtable of Java’s java.-
util package. All elements in the table are stored in a fixed-length array whose
length is, ideally, prime. Initialization ensures that each slot within the array
is set to null. Eventually, slots will contain references to associations between
keys and values. We use an array for speed, but a Vector would be a logical
alternative.

Hashtable

protected static final String RESERVED = "RESERVED";

protected Vector<HashAssociation<K,V>> data;

protected int count;

protected final double maximumLoadFactor = 0.6;

public Hashtable(int initialCapacity)

// pre: initialCapacity > 0

// post: constructs a new Hashtable

// holding initialCapacity elements

{

Assert.pre(initialCapacity > 0, "Hashtable capacity must be positive.");

1 Using the last two digits of the telephone number makes for an evenly distributed set of values. It
is not the case that the first two digits of the exchange would be useful, as that is not always random.
In our town, where the exchange begins with 45, no listed phones have extensions beginning with
45.
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Figure 15.1 Hashing color names of antique glass. (a) Values are hashed into the first
available slot, possibly after rehashing. (b) The lookup process uses a similar approach
to possibly find values.

data = new Vector<HashAssociation<K,V>>();

data.setSize(initialCapacity);

count = 0;

}

public Hashtable()

// post: constructs a new Hashtable

{

this(997);

}

The key and value management methods depend on a function, locate,
that finds a good location for a value in the structure. First, we use an index-
producing function that “hashes” a value to a slot or bucket (see Figure 15.1).
In Java, every Object has a function, called hashCode, that returns an integer
to be used for precisely this purpose. For the moment, we’ll assume the hash
code is the alphabet code (a = 0, b = 1, etc.) of the first letter of the word. The
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Figure 15.2 (a) Deletion of a value leaves a shaded reserved cell as a place holder. (b)
A reserved cell is considered empty during insertion and full during lookup.

hash code for a particular key (2 for the word “crystal”) is used as an index to
the first slot to be considered for storing or locating the value in the table. If the
slot is empty, the value can be stored there. If the slot is full, it is possible that
another value already occupies that space (consider the insertion of “marigold”
in Figure 15.1). When the keys of the two objects do not match, we have a
collision. A perfect hash function guarantees that (given prior knowledge of the
set of potential keys) no collisions will occur. When collisions do occur, they can
be circumvented in several ways. With open addressing, a collision is resolved
by generating a new hash value, or rehashing, and reattempting the operation
at a new location.

Slots in the hash table logically have two states—empty (null) or full (a
reference to an object)—but there is also a third possibility. When values are
removed, we replace the value with a reserved value that indicates that the
location potentially impacts the lookup process for other cells during insertions.
That association is represented by the empty shaded cell in Figure 15.2a. Each
time we come across the reserved value in the search for a particular value in
the array (see Figure 15.2b), we continue the search as though there had been
a collision. We keep the first reserved location in mind as a possible location for
an insertion, if necessary. In the figure, this slot is used by the inserted value
“custard.”

When large numbers of different-valued keys hash or rehash to the same
locations, the effect is called clustering (see Figure 15.3). Primary clustering is
when several keys hash to the same initial location and rehash to slots with
potential collisions with the same set of keys. Secondary clustering occurs when
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Figure 15.3 (a) Primary clustering occurs when two values that hash to the same slot
continue to compete during rehashing. (b) Rehashing causes keys that initially hash to
different slots to compete.

keys that initially hash to different locations eventually rehash to the same se-
quence of slots.

In this simple implementation we use linear probing (demonstrated in Fig-
ures 15.1 to 15.3). Any rehashing of values occurs a constant distance from
the last hash location. The linear-probing approach causes us to wrap around
the array and find the next available slot. It does not solve either primary or
secondary clustering, but it is easy to implement and quick to compute. To
avoid secondary clustering we use a related technique, called double hashing,
that uses a second hash function to determine the magnitude of the constant
offset (see Figure 15.4). This is not easily accomplished on arbitrary keys since
we are provided only one hashCode function. In addition, multiples and factors
of the hash table size (including 0) must also be avoided to keep the locate

function from going into an infinite loop. Still, when implemented correctly,
the performance of double hashing can provide significant improvements over
linear-probing.

We now discuss our implementation of hash tables. First, we consider the
locate function. Its performance is important to the efficiency of each of the
public methods.

protected int locate(K key)

{

// compute an initial hash code

int hash = Math.abs(key.hashCode() % data.size());

// keep track of first unused slot, in case we need it

int reservedSlot = -1;

boolean foundReserved = false;

while (data.get(hash) != null)

{

if (data.get(hash).reserved()) {
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// remember reserved slot if we fail to locate value

if (!foundReserved) {

reservedSlot = hash;

foundReserved = true;

}

} else {

// value located? return the index in table

if (key.equals(data.get(hash).getKey())) return hash;

}

// linear probing; other methods would change this line:

hash = (1+hash)%data.size();

}

// return first empty slot we encountered

if (!foundReserved) return hash;

else return reservedSlot;

}

To measure the difficulty of finding an empty slot by hashing, we use the
load factor, α, computed as the ratio of the number of values stored within the
table to the number of slots used. For open addressing, the load factor cannot
exceed 1. As we shall see, to maintain good performance we should keep the
load factor small as possible. Our maximum allowable load factor is a constant
maximumLoadFactor. Exceeding this value causes the array to be reallocated
and copied over (using the method extend).

When a value is added, we simply locate the appropriate slot and insert a
new association. If the ideal slot already has a value (it must have an equal key),
we return the replaced association. If we replace the reference to an empty cell
with the reserved association, we return null instead.

public V put(K key, V value)

// pre: key is non-null object

// post: key-value pair is added to hash table

{

if (maximumLoadFactor*data.size() <= (1+count)) {

extend();

}

int hash = locate(key);

if (data.get(hash) == null || data.get(hash).reserved())

{ // logically empty slot; just add association

data.set(hash,new HashAssociation<K,V>(key,value));

count++;

return null;

} else {

// full slot; add new and return old value

HashAssociation<K,V> a = data.get(hash);

V oldValue = a.getValue();

a.setValue(value);

return oldValue;

}

}
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The get function works similarly—we simply return the value from within
the key-located association or null, if no association could be found.

public V get(K key)

// pre: key is non-null Object

// post: returns value associated with key, or null

{

int hash = locate(key);

if (data.get(hash) == null ||

data.get(hash).reserved()) return null;

return data.get(hash).getValue();

}

The containsKey method is similar. To verify that a value is within the table
we build contains from the elements iterator:

public boolean containsValue(V value)

// pre: value is non-null Object

// post: returns true iff hash table contains value

{

for (V tableValue : this) {

if (tableValue.equals(value)) return true;

}

// no value found

return false;

}

public boolean containsKey(K key)

// pre: key is a non-null Object

// post: returns true if key appears in hash table

{

int hash = locate(key);

return data.get(hash) != null && !data.get(hash).reserved();

}

The containsValue method is difficult to implement efficiently. This is one of
the trade-offs of having a structure that is fast by most other measures.

To remove a value from the Hashtable, we locate the correct slot for the
value and remove the association. In its place, we leave a reserved mark to
maintain consistency in locate.

public V remove(K key)

// pre: key is non-null object

// post: removes key-value pair associated with key

{

int hash = locate(key);

if (data.get(hash) == null || data.get(hash).reserved()) {

return null;

}

count--;
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V oldValue = data.get(hash).getValue();

data.get(hash).reserve(); // in case anyone depends on us

return oldValue;

}

Hash tables are not made to be frequently traversed. Our approach is to
construct sets of keys, values, and Associations that can be, themselves, tra-
versed. Still, to support the Set construction, we build a single iterator (a
HashtableIterator) that traverses the Hashtable and returns the Associa-

tions. Once constructed, the association-based iterator can be used to generate
the key- and value-based iterators.

The protected iterator is similar to the Vector iterator. A current index
points to the cell of the current non-null (and nonreserved) association. When
the iterator is incremented, the underlying array is searched from the current
point forward to find the next non-null entry. The iterator must eventually
inspect every element of the structure, even if very few of the elements are
currently used.2

Given an iterator that returns Associations, we can construct two different
public filtering iterators, a ValueIterator and a KeyIterator. Each of these
maintains a protected internal “slave” iterator and returns, as the iterator is in-
cremented, values or keys associated with the respective elements. This design
is much like the design of the UniqueFilter of Section 8.5. The following code,
for example, implements the ValueIterator:

ValueIterator

class ValueIterator<K,V> extends AbstractIterator<V>

{

protected AbstractIterator<Association<K,V>> slave;

public <T extends Association<K,V>> ValueIterator(Iterator<T> slave)

// pre: slave is an iterator returning Association elements

// post: creates a new iterator returning associated values

{

this.slave = (AbstractIterator<Association<K,V>>)slave;

}

public boolean hasNext()

// post: returns true if current element is valid

{

return slave.hasNext();

}

public V next()

// pre: hasNext()

// post: returns current value and increments iterator

{

2 The performance of this method could be improved by linking the contained associations together.
This would, however, incur an overhead on the add and remove methods that may not be desirable.
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Association<K,V> pair = ((AbstractIterator<Association<K,V>>)slave).next();

return pair.getValue();

}

}

Once these iterators are defined, the Set and Structure returning methods
are relatively easy to express. For example, to return a Structure that contains
the values of the table, we simply construct a new ValueIterator that uses the
HashtableIterator as a source for Associations:

Hashtable

public Structure<V> values()

// post: returns a Structure that contains the (possibly repeating)

// values of the range of this map.

{

List<V> result = new SinglyLinkedList<V>();

Iterator<V> i = new ValueIterator<K,V>(new HashtableIterator<K,V>(data));

while (i.hasNext())

{

result.add(i.next());

}

return result;

}

It might be useful to have direct access to iterators that return keys and values.
If that choice is made, the keys method is similar but constructs a KeyIterator

instead. While the ValueIterator and KeyIterator are protected, they may
be accessed publicly when their identity has been removed by the elements and This is a form of

identity
laundering.

keys methods, respectively.

15.4.2 External Chaining

Open addressing is a satisfactory method for handling hashing of data, if one
can be assured that the hash table will not get too full. When open addressing
is used on nearly full tables, it becomes increasingly difficult to find an empty
slot to store a new value.

One approach to avoiding the complexities of open addressing—reserved
associations and table extension—is to handle collisions in a fundamentally dif-
ferent manner. External chaining solves the collision problem by inserting all
elements that hash to the same bucket into a single collection of values. Typi-
cally, this collection is a singly linked list. The success of the hash table depends
heavily on the fact that the average length of the linked lists (the load factor of
the table) is small and the inserted objects are uniformly distributed. When the
objects are uniformly distributed, the deviation in list size is kept small and no
list is much longer than any other.

The process of locating the correct slot in an externally chained table in-
volves simply computing the initial hashCode for the key and “modding” by the
table size. Once the appropriate bucket is located, we verify that the collection
is constructed and the value in the collection is updated. Because our List
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classes do not allow the retrieval of internal elements, we may have to remove
and reinsert the appropriate association.

Chained-

HashTable

public V put(K key, V value)

// pre: key is non-null object

// post: key-value pair is added to hash table

{

List<Association<K,V>> l = locate(key);

Association<K,V> newa = new Association<K,V>(key,value);

Association<K,V> olda = l.remove(newa);

l.addFirst(newa);

if (olda != null)

{

return olda.getValue();

}

else

{

count++;

return null;

}

}

Most of the other methods are implemented in a similar manner: they locate
the appropriate bucket to get a List, they search for the association within the
List to get the association, and then they manipulate the key or value of the
appropriate association.

One method, containsValue, essentially requires the iteration over two di-
mensions of the hash table. One loop searches for non-null buckets in the hash
table—buckets that contain associations in collections—and an internal loop
that explicitly iterates across the List (the containsKey method can directly
use the containsValue method provided with the collection). This is part of
the price we must pay for being able to store arbitrarily large numbers of keys
in each bucket of the hash table.

public boolean containsValue(V value)

// pre: value is non-null Object

// post: returns true iff hash table contains value

{

for (V v : this) {

if (value.equals(v)) return true;

}

return false;

}

At times the implementations appear unnecessarily burdened by the inter-
faces of the underlying data structure. For example, once we have found an
appropriate Association to manipulate, it is difficult to modify the key. This
is reasonable, though, since the value of the key is what helped us locate the
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Figure 15.5 The time required to construct large ordered structures from random val-
ues.

bucket containing the association. If the key could be modified, we could insert
a key that was inconsistent with its bucket’s location.

Another subtle issue is the selection of the collection class associated with
the bucket. Since linked lists have poor linear behavior for most operations,
it might seem reasonable to use more efficient collection classes—for example,
tree-based structures—for storing data with common hash codes. The graph of
Figure 15.5 demonstrates the performance of various ordered structures when
asked to construct collections of various sizes. It is clear that while SplayTrees
provide better ultimate performance, the simple linear structures are more ef-
ficient when the structure size is in the range of expected use in chained hash
tables (see Figure 15.6). When the average collection size gets much larger than
this, it is better to increase the size of the hash table and re-insert each of the
elements (this is accomplished with the Hashtable method, extend).

15.4.3 Generation of Hash Codes

Because any object might eventually be stored within a hash table, and because
data abstraction hides the details of implementation, it is important for imple-
mentors to provide a hashCode method for their classes whenever possible.

Principle 24 Provide a method for hashing the objects you implement.
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Figure 15.6 The time required to construct small ordered structures from random
values.

When a hashCode method is provided, it is vital that the method return the
same hashCode for any pair of objects that are identified as the same under the
equals method. If this is not the case, then values indexed by equivalent keys
can be stored in distinct locations within the hash table. This can be confusing
for the user and often incorrect.

Principle 25 Equivalent objects should return equal hash codes.
N

NW
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E

The generation of successful hash codes can be tricky. Consider, for example,
the generation of hash codes for Strings. Recall that the purpose of the hash
code generation function is to distribute String values uniformly across the
hash table.

Most of the approaches for hashing strings involve manipulations of the
characters that make up the string. Fortunately, when a character is cast as
an integer, the internal representation (often the ASCII encoding) is returned,
usually an integer between 0 and 255. Our first approach, then, might be to
use the first character of the string. This has rather obvious disadvantages: the
first letters of strings are not uniformly distributed, and there isn’t any way of
generating hash codes greater than 255.

Our next approach would be to sum all the letters of the string. This is
a simple method that generates large-magnitude hash codes if the strings are
long. The main disadvantage of this technique is that if letters are transposed,
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Figure 15.7 Numbers of words from the UNIX spelling dictionary hashing to each of
the 997 buckets of a default hash table, if sum of characters is used to generate hash
code.

then the strings generate the same hash values. For example, the string "dab"

has 100 + 97 + 98 = 295 as its sum of ASCII values, as does the string "bad".
The string "bad" and "bbc" are also equivalent under this hashing scheme. Fig-
ure 15.7 is a histogram of the number of words that hash, using this method, to
each slot of a 997 element hash table. The periodic peaks demonstrate the fact
that some slots of the table are heavily preferred over others. The performance
of looking up and modifying values in the hash table will vary considerably, de-
pending on the slot that is targeted by the hash function. Clearly, it would be
useful to continue our search for a good mechanism.

Another approach might be to weight each character of the string by its
position. To ensure that even very short strings have the potential to generate
large hash values, we can provide exponential weights: the hash code for an l
character string, s, is

l−1∑
i=0

s[i]ci

where c is usually a small integer value. When c is 2, each character is weighted
by a power of 2, and we get a distribution similar to that of Figure 15.8. While
this is closer to being uniform, it is clear that even with exponential behavior,
the value of c = 2 is too small: not many words hash to table elements with
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Figure 15.8 Frequency of dictionary words hashing to each of 997 buckets if characters
are weighted by powers of 2 to generate hash code.
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Figure 15.9 Frequency of words from dictionary hashing to each of 997 buckets if
hash code is generated by weighting characters by powers of 256.
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Figure 15.10 Frequency of words from dictionary hashing to each of 997 buckets,
using the Java String hash code generation.

large indices. When c = 256, the hash code represents the first few characters
of the string exactly (see Figure 15.9). Java currently hashes with c = 31.

The hashing mechanism used by Java Strings in an early version of Java’s
development environment (see Figure 15.10) used a combination of weight-
ings that provided a wide range of values for short strings and was efficient
to compute for longer strings. Unfortunately, the constant-time algorithm was
not suitable for distinguishing between long and nearly identical strings often
found, say, in URLs.

Method Successful Unsuccessful

Linear probes 1
2

(
1 + 1

(1−α)

)
1
2

(
1 + 1

(1−α)2

)
Double hashing 1

α ln 1
(1−α)

1
1−α

External chaining 1 + 1
2α α + e−α

Figure 15.11 Expected theoretical performance of hashing methods, as a function of
α, the current load factor. Formulas are for the number of association compares needed
to locate the correct value or to demonstrate that the value cannot be found.
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Figure 15.12 The shape of the theoretical performance curves for various hashing
techniques. (These graphs demonstrate theoretical predictions and not experimental re-
sults which are, of course, dependant on particular data and hashing functions.) Our
hash table implementation uses linear probing.
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Many of the data structures we have investigated are classes that contain
multiple objects of unspecified type. When hashing entire container classes, it
can be useful to compose the codes of the contained elements.

15.4.4 Hash Codes for Collection Classes

Each of the techniques used to generate hash codes from a composition of char-
acters of Strings can be used to compose hash codes of objects in collection
classes. The features of primary importance for the construction of hash codes
are:

1. Whenever two structures are equal, using the equals methods, the hash-

Code method should return the same value.

2. For container structures—structures whose only purpose is to hold values—
the state of the structure itself should be transparent; the state of the
structure should not be included in the hashCode.

The first item was discussed before, but it is the most common error leading to
difficulties with the use of Hashtables. When the hashCodes do not match for
objects that are logically equal, the objects have a high probability of entering
into different locations of the table. Accesses that should interact do not.

The second consideration is understood if we consider self-modifying struc-
tures like SplayTrees or Hashtables whose external state may be modeled by
several distinct internal states. The construction of the hash code should con-
sider those bits of information that enter into identifying equal structures. In
the case of the SplayTree, for example, we might use the sum of the hash codes
of the values that appear within the tree.

In general, the following first attempt at a hashCode method, taken from the
AbstractStructure type, is reasonable:

Abstract-

Structure

public int hashCode()

// post: generate a hashcode for the structure: sum of

// all the hash codes of elements

{

Iterator<E> i = iterator();

int result = 0;

while (i.hasNext())

{

E o = i.next();

result = result * 31;

if (o != null) result += o.hashCode();

}

return result;

}

As we can see here, we must constantly be on the watch for values that may po-
tentially be null references. For some structures, of course, such an approach
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may lead to intolerable amounts of time computing hashCodes for large struc-
tures.

One last point concerns the hashCodes associated with recursively defined
structures. If the recursive structure is visible externally, that is, the structure
could be referenced at several points, it may be suitable to define the hashCode

to be the value contained within a single node of the structure. This certainly
fulfills the primary obligation of a hashing function, but it also serves to separate
the structure from the hash code. In our case, we choose to make a recursive
definition, similar to the following definition found in BinaryTree:

BinaryTree

public int hashCode()

// post: return sum of hashcodes of the contained values

{

if (isEmpty()) return 0;

int result = left().hashCode() + right().hashCode();

if (value() != null) result += value().hashCode();

return result;

}

15.4.5 Performance Analysis

For open addressing, the load factor α obviously cannot exceed 1. As the load
factor approaches 1, the performance of the table decreases dramatically. By
counting the number of probes or association compares needed to find a value
(a successful search) or to determine that the value is not among the elements
of the map (an unsuccessful search), we can observe the relative performance
of the various hashing techniques (see Figures 15.11 and 15.12). Notice that
the number of probes necessary to find an appropriate key is a function of the
load factor, and not directly of the number of keys found in the table.

When a hash table exceeds the maximum allowable load factor, the entire
table is forced to expand, and each of the keys is rehashed. Looking at the graph
in Figure 15.12, we select our threshold load factor to be 60 percent, the point
at which the performance of linear probing begins to degrade. When we expand
the hash table, we make sure to at least double its size. For the same reasons
that doubling is good when a Vector is extended, doubling the size of the hash
table improves the performance of the hash table without significant overhead.

15.5 Ordered Maps and Tables

A significant disadvantage of the Map interface is the fact that the values stored
within the structure are not kept in any particular order. Often we wish toIn fact, better

hash functions
probably avoid

order!

efficiently maintain an ordering among key-value pairs. The obvious solution
is to construct a new OrderedMap that builds on the interface of the Map, but
where methods may be allowed to assume parameters that are Comparable:



15.5 Ordered Maps and Tables 393

public interface OrderedMap<K extends Comparable<K>,V> extends Map<K,V>

{

}

When we do this, the methods of the Map are inherited. As a result, the types
OrderedMap

of the key-based methods manipulate Objects and not Comparables. Because
we desire to maintain order among comparable keys, we have a general pre-
condition associated with the use of the data structure—that keys provided and
returned must be objects supporting the Comparable interface.

Even with comparable keys, it is not easy to construct a Hashtable whose
keys iterator returns the keys in order. The hash codes provided for Comparable
objects are not required (and unlikely) to be ordered in a way consistent with
the compareTo function. We therefore consider other OrderedStructures to
maintain the order among ComparableAssociations.

We will call our implementation of the OrderedMap a Table. As a basis for
the implementation, we depend on the SplayTree class. OrderedLists and
OrderedVectors could also provide suitable implementations for small applica-
tions. The Table maintains a single protected data item—the SplayTree. The
constructor is responsible for allocating the SplayTree, leaving it initialized in
its empty state:

Table

protected OrderedStructure<ComparableAssociation<K,V>> data;

public Table()

// post: constructs a new table

{

data = new SplayTree<ComparableAssociation<K,V>>();

}

public Table(Table<K,V> other)

{

data = new SplayTree<ComparableAssociation<K,V>>();

Iterator<Association<K,V>> i = other.entrySet().iterator();

while (i.hasNext())

{

Association<K,V> o = i.next();

put(o.getKey(),o.getValue());

}

}

When a key-value pair is to be put into the Table, a ComparableAssociation

is constructed with the key-value pair, and it is used to look up any previous
association using the same key. If the association is present, it is removed. In
either case, the new association is inserted into the tree. While it seems indi-
rect to remove the pair from the table to update it, it maintains the integrity of
the ComparableAssociation and therefore the SplayTree. In addition, even
though two keys may be logically equal, it is possible that they may be distin-
guishable. We insert the actual key-value pair demanded by the user, rather
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than perform a partial modification. Theoretically, removing and inserting a
value into the SplayTree costs the same as finding and manipulating the value
in place. Next, we see the method for put (get is similar):

public V put(K key, V value)

// pre: key is non-null object

// post: key-value pair is added to table

{

ComparableAssociation<K,V> ca =

new ComparableAssociation<K,V>(key,value);

// fetch old key-value pair

ComparableAssociation<K,V> old = data.remove(ca);

// insert new key-value pair

data.add(ca);

// return old value

if (old == null) return null;

else return old.getValue();

}

While most of the other methods follow directly from considering Hash-

tables and SplayTrees, the contains method—the method that returns true
exactly when a particular value is indexed by a key in the table—potentially re-
quires a full traversal of the SplayTree. To accomplish this, we use an Iterator

returned by the SplayTree’s elements methods. We then consider each associ-
ation in turn, returning as soon as an appropriate value is found:

public boolean containsValue(V value)

// pre: value is non-null object

// post: returns true iff value in table

{

Iterator<V> i = iterator();

while (i.hasNext())

{

V nextValue = i.next();

if (nextValue != null &&

nextValue.equals(value)) return true;

}

return false;

}

Next, our Table must provide an Iterator to be used in the construction
of the keySet and entrySet. The approach is similar to the Hashtable—
we construct a private Association-returning Iterator and then return its
KeyIterator or ValueIterator. Because every value returned from the Splay-
Tree’s iterator is useful,3 we need not implement a special-purpose iterator for

3 Compare this with, perhaps, a Vector iterator that might be used to traverse a Vector-based
Hashtable.
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Tables; instead, we use the SplayTree’s iterator directly. Since Comparable-

Associations extend Associations, the KeyIterator generates an Iterator

that returns the comparable keys as Objects to be cast later.

public Set<K> keySet()

// post: returns a set containing the keys referenced

// by this data structure.

{

Set<K> result = new SetList<K>();

Iterator<K> i = new KeyIterator<K,V>(data.iterator());

while (i.hasNext())

{

result.add(i.next());

}

return result;

}

public Set<Association<K,V>> entrySet()

// post: returns a structure containing all the entries in

// this Table

{

Set<Association<K,V>> result = new SetList<Association<K,V>>();

Iterator<ComparableAssociation<K,V>> i = data.iterator();

while (i.hasNext())

{

result.add(i.next());

}

return result;

}

Previous hard work greatly simplifies this implementation! Since no hashing
occurs, it is not necessary for any of the keys of a Table to implement the
hashCode method. They must, though, implement the compareTo method since
they are Comparable. Thus, each of the methods runs in amortized logarithmic
time, instead of the near-constant time we get from hashing.

Exercise 15.2 Modify the Table structure to make use of RedBlackTrees, instead
of SplayTrees.

Exercise 15.3 It is common to allow ordered structures, like OrderedMap, to use a
Comparator to provide an alternative ordering. Describe how this approach might
be implemented.

15.6 Example: Document Indexing

Indexing is an important task, especially for search engines that automatically
index keywords from documents retrieved from the Web. Here we present the
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skeleton of a document indexing scheme that makes use of a Map to keep track
of the vocabulary.

Given a document, we would like to generate a list of words, each followed
by a list of lines on which the words appear. For example, when provided
Gandhi’s seven social sins:

politics without principle

pleasure without conscience

wealth without work

knowledge without character

business without morality

science without humanity

and

worship without sacrifice

(It is interesting to note that programming without comments is not among
these!) The indexing program should generate the following output:

and: 7

business: 5

character: 4

conscience: 2

humanity: 6

knowledge: 4

morality: 5

pleasure: 2

politics: 1

principle: 1

sacrifice: 8

science: 6

wealth: 3

without: 1 2 3 4 5 6 8

work: 3

worship: 8

In this program we make use of Java’s StreamTokenizer class. This class
takes a stream of data and converts it into a stream of tokens, some of which
are identified as words. The process for constructing this stream is a bit difficult,
so we highlight it here.

Index

public static void main(String args[])

{

try {

InputStreamReader isr = new InputStreamReader(System.in);

java.io.Reader r = new BufferedReader(isr);

StreamTokenizer s = new StreamTokenizer(r);

...

} catch (java.io.IOException e) {

Assert.fail("Got an I/O exception.");

}

}
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Each of the objects constructed here provides an additional layer of filtering on
the base stream, System.in. The body of the main method is encompassed by
the try statement in this code. The try statement catches errors generated by
the StreamTokenizer and rewraps the exception as an assertion failure.

We begin by associating with each word of the input an initially empty list
of line numbers. It seems reasonable, then, to use the vocabulary word as a
key and the list of lines as the value. Our Map provides an ideal mechanism to
maintain the data. The core of the program consists of reading word tokens
from the stream and entering them into the Map:

// allocate the symbol table (uses comparable keys)

Map<String,List<Integer>> t = new Table<String,List<Integer>>();

int token;

// we'll not consider period as part of identifier

s.ordinaryChar('.');

// read in all the tokens from file

for (token = s.nextToken();

token != StreamTokenizer.TT_EOF;

token = s.nextToken())

{

// only tokens we care about are whole words

if (token == StreamTokenizer.TT_WORD)

{

// each set of lines is maintained in a List

List<Integer> l;

// look up symbol

if (t.containsKey(s.sval))

{ // symbol is there, get line # list

l = t.get(s.sval);

l.addLast(s.lineno());

} else {

// not found, create new list

l = new DoublyLinkedList<Integer>();

l.addLast(s.lineno());

t.put(s.sval,l);

}

}

}

Here, we use a Table as our Map because it is important that the entries be
sorted alphabetically. As the tokens are read from the input stream, they are
looked up in the Map. Since the Map accepts comparable keys, it is important
to use a (comparable) String to allow the words to index the structure. If the
key is within the Map, the value associated with the key (a list) is updated by
appending the current line number (provided by the stream’s lineno method)
to the end of the list. If the word is not found, a new list is allocated with the
current line appended, and the fresh word–list pair is inserted into the table.

The next section of the program is responsible for generating the output:
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// printing table involves tandem key-value iterators

Iterator<List<Integer>> ki = t.values().iterator();

for (String sym : t.keySet())

{

// print symbol

System.out.print(sym+": ");

// print out (and consume) each line number

for (Integer lineno : ki.next())

{

System.out.print(lineno+" ");

}

System.out.println();

// increment iterators

}

Here, two iterators—one for keys and one for values—are constructed for the
Map and are incremented in parallel. As each word is encountered, it is printed
out along with the list of line numbers, generated by traversing the list with an
iterator.

Because we used a Table as the underlying structure, the words are kept
and printed in sorted order. If we had elected to use a Hashtable instead, the
output would appear shuffled. The order is neither alphabetical nor the order in
which the words are encountered. It is the result of the particular hash function
we chose to locate the data.

15.7 Conclusions

In this chapter we have investigated two structures that allow us to access values
using a key or index from an arbitrary domain. When the keys can be uniformly
distributed across a wide range of values, hashing is an excellent technique for
providing constant-time access to values within the structure. The cost is extra
time necessary to hash the value, as well as the extra space needed to keep the
load factor small enough to provide the expected performance.

When the keys are comparable, and order is to be preserved, we must de-
pend on logarithmic behavior from ordered structures we have seen before. In
our implementation of Tables, the SplayTree was used, although any other
OrderedStructure could be used instead.

Because of the nonintuitive nature of hashing and hash tables, one of the
more difficult tasks for the programmer is to generate useful, effective hash
code values. Hash functions should be designed specifically for each new class.
They should be fast and deterministic and have wide ranges of values. While
all Objects inherit a hashCode function, it is important to update the hashCode

method whenever the equals method is changed; failure to do so leads to subtle
problems with these useful structures.
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Self Check Problems

Solutions to these problems begin on page 450.

15.1 What access feature distingishes Map structures from other structrues
we have seen?

15.2 What is the load factor of a hash table?

15.3 In a hash table is it possible to have a load factor of 2?

15.4 Is a constant-time performance guaranteed for hash tables?

15.5 What is a hash collision?

15.6 What are the qualities we seek in a hash function?

15.7 Under what condition is a MapList preferable to a Hashtable?

15.8 Many of our more complex data structures have provided the under-
pinnings for efficient sorts. Is that the case for the Hashtable? Does the Table

facilitate sorting?

Problems

Solutions to the odd-numbered problems begin on page 484.

15.1 Is it possible for a hash table to have two entries with equal keys?

15.2 Is it possible for a hash table to have two entries with equal values?

15.3 Suppose you have a hash table with seven entries (indexed 0 through
6). This table uses open addressing with the hash function that maps each letter
to its alphabet code (a = A = 0, etc.) modulo 7. Rehashing is accomplished
using linear-probing with a jump of 1. Describe the state of the table after each
of the letters D, a, d, H, a, and h are added to the table.

15.4 Suppose you have a hash table with eight entries (indexed 0 through 7).
The hash mechanism is the same as for Problem 15.3 (alphabet code modulo 8),
but with a linear probe jump of 2. Describe what happens when one attempts to
add each of the letters A, g, g, a, and g, in that order. How might you improve
the hashing mechanism?

15.5 When using linear probing with a rehashing jump size of greater than
1, why is it necessary to have the hash table size and jump size be relatively
prime?

15.6 Design a hashCode method for a class that represents a telephone num-
ber.

15.7 Design a hashCode method for a class that represents a real number.

15.8 Suppose two identifiers—Strings composed of letters—were consid-
ered equal even if their cases were different. For example, AGEdwards would be
equal to AgedWards. How would you construct a hash function for strings that
was “case insensitive”?
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15.9 When 23 randomly selected people are brought together, chances are
greater than 50 percent that two have the same birthday. What does this tell us
about uniformly distributed hash codes for keys in a hash table?

15.10 Write a hashCode method for an Association.

15.11 Write a hashCode method for a Vector. It should only depend on hash
codes of the Vector’s elements.

15.12 Write a hashCode method for a BinaryTree. Use recursion.

15.13 Write a hashCode method for a Hashtable. (For some reason, you’ll be
hashing hash tables into other hash tables!) Must the hashing mechanism look
at the value of every element?

15.14 The Java hash function for Strings computes a hash code based on a
fixed maximum number of characters of the string. Given that Strings have
no meaningful upper bound in length, describe how an effective, constant-time
hashing algorithm can be constructed. (Hint: If you were to pick, say, eight
characters to represent a string of length l, which would you choose?)

15.15 Since URLs differ mostly toward their end (at high indices), write code
that efficiently computes a hash code based on characters l − xi where xi =
2i and i = 0, 1, 2, . . . How fast does this algorithm run? Is it better able to
distinguish different URLs?

15.16 A hash table with ordered linear probing maintains an order among
keys considered during the rehashing process. When the keys are encountered,
say, in increasing order, the performance of a failed lookup approaches that of
a successful search. Describe how a key might be inserted into the ordered
sequence of values that compete for the same initial table entry.

15.17 Isn’t the hash table resulting from Problem 15.16 just an ordered Vector?
(Hint: No.) Why?

15.18 If we were to improve the iterators for Maps, we might add an iterator
that returned key-value pairs. Is this an improvement in the interface?

15.19 Design a hash function for representing the state of a checkerboard.

15.20 Design a hash function for representing the state of a tic-tac-toe board.
(It would—for strategy reasons—be useful to have mirror images of a board be
considered equal.)

15.21 One means of potentially reducing the complexity of computing the
hash code for Strings is to compute it once—when the String is constructed.
Future calls to hashCode would return the precomputed value. Since the value
of a String never changes, this has potential promise. How would you evaluate
the success of such a method?

15.22 Explain how a Map might be useful in designing a spelling checker.
(Would it be useful to have the words bible and babble stored near each
other?)



15.8 Laboratory: The Soundex Name Lookup Sys-
tem

Objective. To use a Map structure to keep track of similar sounding names.

Discussion. The United States National Archives is responsible for keeping track
of the census records that, according to the Constitution, must be gathered every
10 years. After a significant amount of time has passed (70 or more years), the
census records are made public. Such records are of considerable historical
interest and a great many researchers spend time looking for lost ancestors
among these records.

To help researchers find individuals, the censuses are often indexed using a
phonetic system called Soundex. This system takes a name and produces a short
string called the Soundex key. The rules for producing the Soundex key of a
name are precisely:

1. The entire name is translated into a series of digit characters:

Character Letter of name
`1' b, p, f, v
`2' c, s, k, g, j, q, x, z
`3' d, t
`4' l
'5' m, n
'6' r
'7' all other letters

For example, Briggs would be translated into the string 167222.

2. All double digits are reduced to single digits. Thus, 167222 would become
1672.

3. The first digit is replaced with the first letter of the original name, in
uppercase. Thus, 1672 would become B672.

4. All 7’s are removed. Thus, B672 becomes B62.

5. The string is truncated to four characters. If the resulting string is shorter
than four characters, it is packed with enough '0' characters to bring the
length to four. The result for Briggs would be B620. Notice that, for the
most part, the nonzero characters represent the significant sounded letters
of the beginning of the name.

Other names translate to Soundex keys as follows:



402 Maps

Bailey becomes B400
Ballie becomes B400
Knuth becomes K530

Scharstein becomes S623
Lee becomes L000

Procedure. You are to write a system that takes a list of names (the UNIX
spelling dictionary is a good place to find names) and generates an ordered
map whose entries are indexed by the Soundex key. The values are the actual
names that generated the key. The input to the program is a series of names,
and the output is the Soundex key associated with the name, along with all the
names that have that same Soundex key, in alphabetical order.

Pick a data structure that provides performance: the response to the query
should be nearly instantaneous, even with a map of several thousand names.

Thought Questions. Consider the following questions as you complete the lab:

1. What is the Soundex system attempting to do when it encodes many let-
ters into one digit? For example, why are ‘d’ and ‘t’ both encoded as '3'?

2. Why does the Soundex system ignore any more than the first four sounds
in a name?

Notes:


